Inertial & Gravitational Masses

(i) Inertial masses :– It is a measure of the ability of a body to oppose the production of acceleration in it by an external force. It also measure inertia of a body.
Let F be applied force on a body which produces an acceleration a
Then, F = ma
m = F/a
(i) Gravity has no effect on the inertial mass of the body
(ii) Inertial mass does not depends upon the size, shape and state of the body
(iii) Inertial mass of a body does not depend upon on the presence or absence of other bodies near it.
(iv) Inertial mass of a body is directly proportional to the quantity of matter contained in the body.
(v) Inertial mass of the body increases with increase in velocity.
m= mo/(1-v2/c2)1/2
Where mo is mass of a body at rest
v is velocity of the body
c is the velocity of the light in vacuum.
Gravitation of Mass :–
It is defined as mass of body which determines the magnitude of gravitational pull between the body and the earth. Let F be the gravitational force on a body of mass m due to earth
Then F = GMm/R2
Where R is the radius of earth
M is the mass of earth
m = FR2/GM
The mass of body determined in this way is the gravitational mass of the body.
Gravitational mass is same as inertial mass in all respect, except in the method of their measurement.

Author: Rajesh Jha for CBSE|IIT-JEE|NEET

Leave a Reply