Q. A bar magnet of magnetic moment M is divided into ‘n’ equal parts cutting parallel to length. Then one part is suspended in a uniform magnetic field of strength 2 T and held making an angle 60° with the direction of the field. When the magnet is released the K.E. of the magnet in the equilibrium position is
(a) M/n
(b) M n
(c) M/n2
(d) Mn2
Ans: (a)
Sol: Magnetic moment of each part $ \displaystyle M’ = \frac{M}{n} $
Initial P.E $ \displaystyle U_i = – M’ B cos60 $
$\displaystyle U_i = – \frac{M}{n}\times 2 \times \frac{1}{2} $
$ \displaystyle U_i = – \frac{M}{n}$
Final P.E $ \displaystyle U_f = – M’ B cos0 $
$ \displaystyle U_f = – \frac{M}{n}\times 2 \times 1 $
$ \displaystyle U_f = – \frac{2 M}{n}$
Applying Energy conservation;
Loss in P.E = Gain in K.E
$ \displaystyle U_i – U_f = K.E_f – K.E_i $
$ \displaystyle – \frac{M}{n} – (- \frac{2 M}{n}) = K.E_f – 0 $
$ \displaystyle K.E_f = \frac{M}{n} $