Q: A particle of mass m is revolving in a horizontal circle of radius r with a constant angular speed ω . The areal velocity of the particle is
(A) r2 ω
(B) r2 θ
(C) r2ω/2
(D) rω2/2
Solution :
Areal velocity = dA/dt ;
where A = area of the sector
=r2θ/2
$\large \frac{dA}{dt} = \frac{d}{dt}(\frac{r^2 \theta}{2}) $
$\large = \frac{1}{2}r^2 \frac{d\theta}{dt} = \frac{r^2 \omega}{2}$