Q. An electron (mass m) with an initial velocity $ v = v_o\hat{i} (v_o > 0)$ is in an electric field $E = -E_o\hat{i} (E_o =constant > 0)$ . Its de Broglie wavelength at time t is given by
(a) λ0/(1 + eE0t/mv0)
(b) λ0(1 + eE0t/mv0)
(c) λ0
(d) λ0t
Ans: (a)
Sol: Initial wavelength , λ0 = h/mv0
Acceleration of electron , a = eE0/m
v = u + at ⇒ v = v0 + (eE0/m )t
Wavelength , $\large \lambda = \frac{h}{m v} = \frac{h}{m (v_o + \frac{eE_o}{m} t)}$
$\large \lambda = \frac{h}{m v_o (1 + \frac{eE_o}{m v_o} t)}$
$\large \lambda = \frac{\lambda_o}{ (1 + \frac{eE_o}{m v_o} t)}$