Q: An ideal gas at 27°C is compressed adiabatically to 8/27 of its original volume. If γ = 5/3, then the rise in temperature is
(a) 450°C
(b) 375°C
(c) 225°C
(d) 405°C
Ans: (b)
Sol: T1 = 27 + 273 = 300 K, V1 = V, V2 = (8/27) V, T2 = ?
$\large T_1 V_1^{\gamma -1} = T_2 V_2^{\gamma -1} $
$\large T_2 = T_1 (\frac{V_1}{V_2})^{\gamma -1} $
$\large T_2 = 300 \times \frac{V}{8V/27}^{5/3 -1} $
$\large T_2 = 300 \times (\frac{27}{8})^{2/3}$
$\large T_2 = 300 \times (\frac{3}{2})^2 $
T2 = 675 K
∆T = T2 – T2
∆T = 675 – 300 = 375 K
or , ∆T = 375°C