Q: In an ellipse $\displaystyle \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 $ where a > b, the distance of the normal from the centre does not exceed by …..
Solution : Equation of ellipse $\displaystyle \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 $
Normal at (a cosθ , b sinθ), a x sinθ – b y cosθ -(a2-b2) sinθ cosθ = 0
Distance of normal from origin ,
$\displaystyle D = \frac{(b^2 – a^2) sin\theta cos\theta}{\sqrt{a^2 sin^2 \theta + b^2 cos^2 \theta}}$
$\displaystyle D = \frac{(b^2 – a^2)}{a^2 sec^2 \theta + b^2 cosec^2 \theta} $
For D to be maximum, (a2sec2θ + b2 cosec2θ) should be minimum. Now proceed