Q: Solve for n the equation $cos(\frac{\pi}{4}(n^2 + 2 n)) = sin(\frac{\pi}{4}(n^2 + n + 1)) $ , where n is an integer .
Solution : The given equation is
$cos(\frac{\pi}{4}(n^2 + 2 n)) = sin(\frac{\pi}{4}(n^2 + n + 1)) $
$cos(\frac{\pi}{4}(n^2 + 2 n)) = cos(\frac{\pi}{2} – \frac{\pi}{4}(n^2 + n + 1)) $
$sin\frac{\pi}{8}(2n^2 + 3 n -1) sin\frac{\pi}{8}(n+1) = 0 $
Either $sin\frac{\pi}{8}(n+1) = 0 $ or , $sin\frac{\pi}{8}(2n^2 + 3 n -1) = 0 $
CaseI : $sin\frac{\pi}{8}(n+1) = 0 = sink\pi $ ; k ∈ I
Case II : $sin\frac{\pi}{8}(2n^2 + 3 n -1) = 0 = sink\pi $; k ∈ I
2n2 + 3n – 1= 8 k , k ∈ I
Let n1 and n2 be two integral values of n such that
$2n_1^2 + 3 n_1 – 1 = 8 k_1 $ ….(i)
and $2n_2^2 + 3 n_2 – 1 = 8 k_2 $ …(ii)
Subtracting (ii) from (i), we get
(n1 – n2) [2(n1 + n2) + 3] = 8(k1 – k2).
Since 2(n1 + n3) + 3 is odd, n1 – n2 must be a multiple of 8
i.e. n1 – n2 = 8p or n1 = 8p + n2.
For k2 = 1, (ii) gives n2 = -3. Hence n = 8p – 3.
Hence from case I and II, the solution is n = 8p – 1 or n = 8p – 3 for p ∈ I.