Q: If x = 1 + a + a2 + a3 + ….. to ∞ (|a| < 1), y = 1 + b + b2 + b3 + ….. to ∞ (|b| < 1) , prove that 1 + ab + a2b2 + a3b3 + …. to ∞ $ = \frac{x y}{x + y -1}$
Solution : x = 1 + a + a2 + a3 + ….. to ∞
$\displaystyle x = \frac{1}{1-a}$
y = 1 + b + b2 + b3 + ….. to ∞
$\displaystyle y = \frac{1}{1-b}$
1 + ab + a2b2 + a3b3 + …. to ∞
$\displaystyle = \frac{1}{1-a b}$
Putting the values of x and y we get
$\displaystyle \frac{x y}{x + y -1} = \frac{\frac{1}{1-a} . \frac{1}{1-b}}{\frac{1}{1-a} + \frac{1}{1-b} -1}$
$\displaystyle \frac{x y}{x + y -1} = \frac{1}{1-a b} $