Q: If a, b, x, y are positive natural numbers such that $\displaystyle \frac{1}{x} + \frac{1}{y} = 1$ then Prove that $\displaystyle \frac{a^x}{x} + \frac{a^y}{y} = \ge a b $
Sol: Consider the positive numbers
ax , ax , …. ky times and by, by, …. kx times
For all these numbers,
$\displaystyle \frac{(a^x + a^x + …..ky \; times )+(b^y + b^y + …..k x \; times)}{k x + k y} $
$\displaystyle = \frac{ky a^x + k x b^y}{k(x+y)} $
$\displaystyle = \frac{y a^x + x b^y}{(x+y)} $
$\displaystyle GM = [(a^x .a^x …..ky \; times) (b^y . b^y ……kx \times)]^{1/k(x+y)} $
$\displaystyle GM =( a^{x(ky) . b^{y(kx)}})^{1/k(x+y)} $
$\displaystyle GM = (ab)^{(\frac{k xy}{k(x+y)})} = (ab)^{(\frac{xy}{(x+y)})} $ …..(i)
As , $\displaystyle \frac{1}{x} + \frac{1}{y} = 1 $
$\displaystyle \frac{x+y}{x y} = 1 $
x + y = x y
(i) becomes
$\displaystyle \frac{y a^x + x b^y}{x y} \ge a b $
$\displaystyle \frac{a^x}{x} + \frac{b^y}{y} \ge a b $