Q: A plane EM wave travelling along z– direction is described by $\displaystyle E = E0 sin(kz – ωt)\hat{j} $ Show that
(i) The average energy density of the wave is given by $u_{av} = \frac{1}{4} \epsilon_0 E_0^2 + \frac{1}{4} \frac{B_0^2}{\mu_0} $
(ii) The time averaged intensity of the wave is given by $ I_{av} = \frac{1}{2} c \epsilon_0 E_0^2 $
Solution : We know that energy density associated with E.F.
$\displaystyle u_E = \frac{1}{2} \epsilon_0 E^2 $
We know that energy density associated with M.F
$\displaystyle u_B = \frac{B^2}{2 \mu_0} $
Thus total energy of EM wave is given by
$\displaystyle u = u_E + u_B = \frac{1}{2} \epsilon_0 E^2 $
$\displaystyle u = \frac{1}{2} \epsilon_0 E^2 + \frac{B^2}{2 \mu_0} $
putting the values of E.F. and M.F.
$\displaystyle u = \frac{1}{2} \epsilon_0 E_0^2 sin^2 (kz -\omega t) + \frac{B_0^2}{2 \mu_0} sin^2 (kz -\omega t) $
If we take the average value over a long period of time $\displaystyle sin^2 (kz -\omega t) = \frac{1}{2}$
The above equation can also be written as
$\displaystyle u_{avg} = \frac{1}{4} \epsilon_0 E_0^2 + \frac{B_0^2}{4 \mu_0} $
But uE = uB
$\displaystyle u_{avg} = \frac{1}{2} \epsilon_0 E_0^2 $
or , $\displaystyle u_{avg} = \frac{B_0^2}{2 \mu_0} $
Intensity :
Energy crossing per unit area per unit time perpendicular to the direction of propogation is called intensity of wave.
Energy contained in the volume :
$\displaystyle U = u_{avg} \times Volume $
$\displaystyle U = \frac{1}{2} \epsilon_0 E_0^2 \times (A \times c \Delta t) $
$\displaystyle Intensity = \frac{U}{A \Delta t} = \frac{1}{2} \epsilon_0 E_0^2 c $
$\displaystyle I = \frac{1}{2} \epsilon_0 c E_0^2 $