Problem : A particle is projected up from the bottom of an inclined plane of inclination a with velocity v0. If it returns to the point of projection after an elastic impact with the plane, find the total time of motion of the particle.
Solution: To return to the point of projection after one elastic collision the particle must meet the plane at right angle of the particle along x axis.
vx – vxo = (-g sin α)t0
⇒ 0 – v0 cos θ = (-g sin α)t0
$ \displaystyle t_0 = \frac{v_0 cos\theta}{gsin\alpha} $ ……(i)

Motion of the particle along y axis
$ \displaystyle \vec{v_y} – \vec{v_{y0}} = ( g cos\alpha) t_0 $
$ \displaystyle v_0 sin\theta + v_0sin\theta = ( g cos\alpha) t_0 $
$ \displaystyle t_0 = \frac{2v_0 sin\theta}{gcos\alpha} $ …(ii)
Equating (i) & (ii)
$ \displaystyle \frac{v_0 cos\theta}{gsin\alpha} = \frac{2v_0 sin\theta}{gcos\alpha} $
⇒ $ \displaystyle cot\theta = 2 tan\alpha $ …(iii)
$ \displaystyle cos\theta = \frac{2tan\alpha}{\sqrt{1 + 4tan^2 \alpha}} $
$ \displaystyle sin\theta = \frac{1}{\sqrt{1 + 4tan^2 \alpha}} $
∴ Time of flight for to & fro motion of the particle
$ \displaystyle T = 2 t_0 = \frac{2 v_0 cos\theta}{gsin\alpha} $ (from (i))
$ \displaystyle T = 2 t_0 = \frac{2 v_0 (\frac{2tan\alpha}{\sqrt{1 + 4tan^2 \alpha}})}{gsin\alpha} $
$ \displaystyle = \frac{4v_0}{g\sqrt{1 + 3 sin^2\alpha}} $