Problem: If a function satisfies the condition $f(x+\frac{1}{x}) = x^2 + \frac{1}{x^2} , x \ne 0 $ then domain of f (x) is
(A) [-2 , 2]
(B) (-∞ , 2] ∪ [2 , ∞ )
(C) (0 , ∞)
(D) none of these
Sol: $f(x+ \frac{1}{x}) = (x+\frac{1}{x})^2 – 2 $
⇒ f(y) = y2 –2, where y = x + 1/x
for x > 0, y = x + 1/x ≥ 2 and for x < 0, y = x + 1/x ≤ –2
Hene (B) is the correct answer.