If $ \frac{a_2 a_3}{a_1 a_4} = \frac{a_2 + a_3}{a_1 + a_4} = 3 \frac{a_2 – a_3}{a_1 – a_4} $ , then a1, a2, a3, a4 are in

Q: If $ \frac{a_2 a_3}{a_1 a_4} = \frac{a_2 + a_3}{a_1 + a_4} = 3 \frac{a_2 – a_3}{a_1 – a_4} $ , then a1 , a2 , a3 , a4 are in

(A) A.P

(B) G.P

(C) H.P

(D) none of these

Ans: (C)

Sol: $\large \frac{a_1 + a_4}{a_1 a_4} = \frac{a_2 + a_3}{a_2 a_3} $

$\large \frac{1}{a_4} + \frac{1}{a_1} = \frac{1}{a_2} + \frac{1}{a_3} $

$\large \frac{1}{a_2} – \frac{1}{a_1} = \frac{1}{a_4} – \frac{1}{a_3} $

Also , $\large 3 \frac{(a_2 – a_3)}{a_2 a_3} = \frac{a_1 – a_4}{a_1 a_4}$

$\large 3(\frac{1}{a_3} – \frac{1}{a_2} ) = \frac{1}{a_4} – \frac{1}{a_1} $

So , $\large \frac{1}{a_1} , \frac{1}{a_2} , \frac{1}{a_3} , \frac{1}{a_4}$ are in A.P