If the curves $ax^2 + 4xy + 2y^2 + x+ y + 5 = 0 $  and $ax^2 + 6xy + 5y^2 + 2x + 3y + 8 = 0$  intersect…

Problem: If the curves $ax^2 + 4xy + 2y^2 + x+ y + 5 = 0 $  and $ax^2 + 6xy + 5y^2 + 2x + 3y + 8 = 0$  intersect at four concyclic points then the value of a is

(A) 4

(B) -4

(C) 6

(D) –6

Solution: Any second degree curve passing through the intersection of the given curves is

ax2 + 4xy + 2y2 + x + y + 5 + λ ( ax2 + 6xy + 5y2 +2 x + 3y + 8 ) = 0

If it is a circle, then coefficient of x2  = coefficient  of y2  and  coefficient of  xy = 0

a(1+ λ) = 2 + 5λ  and   4 + 6λ  = 0

$\large a = \frac{2+5\lambda}{1+\lambda} $ and $\lambda =- \frac{2}{3}$

$\large a = \frac{2-\frac{10}{3}}{1-\frac{2}{3}} = -4$

Hence (B) is the correct answer.