Problem: If x + y = 0 is the angle bisector of the angle containing the point (1, 0), for the line 3x + 4y + b = 0, 4x + 3y – b = 0 then b can be
(A) 3
(B) 4
(C) 5
(D) 6
Ans: (C) , (D)
Sol: (3x + 4y + b) = ± (4x + 3y – b)
For x + y = 0, we have to choose -ve sign.
(3x1 + 4y1 + b) (4x1 + 3y1 – b) < 0
⇒ (3 + b) (4 – b) < 0
⇒ b > 4 or b < -3.