If |z| = min {|z – 1| , |z + 1|} , then

Q: If |z| = min {|z – 1|, |z + 1|}, then

(A) |z + z| = 1/2

(B) z + z = 1

(C) |z + z| = 1

(D) none of these

Click to See Answer :
Ans: (C)
Sol: Sol. |z| = min {|z – 1|, |z + 1|} = |z – 1| for Re (z) > 0

But |z| = |z – 1| ⇒ Re (z) = 1/2 ,

Similarly, |z| = min {|z – 1|, |z + 1|} = |z + 1|, for Re (z) < 0

⇒ |z| = |z + 1| ⇒ Re (z) = -1/2

where Re(z) =1/2 , z + z = 1 , |z + z| = 1

when Re (z) = 0 ⇒ z + z = 0 and z + z = 0

Hence the argument is |z + z | = 1

Hence (C) is the correct answer.