In a Rutherford scattering experiment when a projectile of z1 and mass M1 approaches a target nucleus of charge z2 and mass M2. The distance of closest approach is r_0. The energy of the projectile is

Q: In a Rutherford scattering experiment when a projectile of z1 and mass M1 approaches a target nucleus of charge z2 and mass M2. The distance of closest approach is r0 . The energy of the projectile is

(a) Directly proportional to M1 × M2

(b) Directly proportional to z1z2

(c) Inversely proportional to z1

(d) Directly proportional to mass M1

Ans: (b)

Sol: $\large \frac{1}{2}M_1 v^2 = \frac{1}{4\pi \epsilon_0} \frac{(Z_1 e)(Z_2 e)}{r_0}$

Where r0 = distance of closest approach

$\large r_0 = \frac{1}{4\pi \epsilon_0} \frac{(Z_1 e)(Z_2 e)}{\frac{1}{2}M_1 v^2}$