Q: $\large \int \frac{cosx (1 + 4 cos2x)}{sinx + 4 sinx cos^2 x} dx $ is equal to
(A) $\large \frac{1}{2} ln|sin^2 x + sin^2 2x| + c $
(B) $\large \frac{1}{2}ln |sinx| + \frac{1}{2} ln|sin x + 4sinx cos^2x| + c $
(C) $\large \frac{1}{2} ln|sin^2 x – sin^2 2x| + c $
(D) $\large \frac{1}{2}ln |sinx| – ln|sin x + 4sinx cos^2x| + c $
Sol: $\large \int \frac{cosx (1 + 4 cos2x)}{sinx + 4 sinx cos^2 x} dx $
Put cosx = t
$\large = – \int \frac{t (1 + 4(2t^2 – 1))}{1-t^2 + 4 (1-t^2)t^2} dt $
$\large = \int \frac{t(8t^2 – 3)}{4t^4 – 3t^2 – 1} dt $
$\large = \frac{1}{2} ln |4t^4 – 3t^2 – 1| + c $
$\large = \frac{1}{2}ln |sinx| + \frac{1}{2} ln|sin x + 4sinx cos^2x| + c $
Also Read :
- f(x) = tan^-1 (sinx + cosx) is an increasing function in
- Let the function f(x) = x^2 + x + sinx – cosx + log(1 + |x|) be defined on the interval [0, 1].....
- If f'(x) = x |sinx| ∀ x ∈ (0, π) and f(0) = 1/√3 , then f(x) will be
- Let f: R→R where f(x) = sinx . Show that f is into.
- Find the period of f(x) = sinx + tan(ax) where a ∈ R+, If it exists.
- Prove that sinx + 2x ≥ 3x (x+1)/π ∀x ∈[0 , π/2]. (Justify the inequality,if any used).
- $f(x) = frac{cosx}{[frac{2x}{pi}] + frac{1}{2}} $ , where x is not an integral multiple of π
- $ Let ; f(x) = left{begin{array}{ll} 1 + sinx ; , x < 0 \ x^2 - x + 1 ; , x geq 0…
- If value of $int_{0}^{alpha} frac{dx}{1-cosalpha cosx} = frac{A}{sinalpha} + B (alpha ne 0)…
- If for non-zero x , $ 3 f(x) + 4 f(frac{1}{x}) = frac{1}{x} - 10 $ then $int_{2}^{3}f(x) dx $ is…