Q: $\displaystyle \int_{0}^{\pi} x f(sin x) dx $ is equal to
(A) $ \frac{\pi}{2} \int_{0}^{\pi} f(sin x) dx $
(B) $ \pi \int_{0}^{\pi/2} f(sin x) dx $
(C) $ 2 \pi \int_{0}^{\pi/2} f(sin x) dx $
(D) none of these
Ans: (A) , (B)
Sol: Let $\displaystyle I = \int_{0}^{\pi} x f(sin x) dx $
$\displaystyle = \int_{0}^{\pi} (\pi – x ) f sin (\pi-x) dx $
$\displaystyle I = \pi \int_{0}^{\pi} f(sin x) dx – I $
$\displaystyle 2 I = \pi \int_{0}^{\pi} f(sin x) dx $
$\displaystyle I = \frac{\pi}{2} \int_{0}^{\pi} f(sin x) dx $
$\displaystyle I = 2 \times \frac{\pi}{2} \int_{0}^{\pi/2} f(sin x) dx $
$\displaystyle I = \pi \int_{0}^{\pi/2} f(sin x) dx $
Hence (A) and (B) are the correct answers.