Problem: Let $A_0 A_1 A_2 A_3 A_4 A_5 $ be a regular hexagon inscribed in a circle of unit radius. Then the product of the lengths of the line segments A0 A1 , A0 A2 , and A0 A4 is
(A) 3/4
(B) 3√3
(C) 3
(D) 3√3/2
Sol:
$\large (A_0 A_1)^2 = \frac{1}{4} + \frac{3}{4}= 1 $
A0 A1 = 1
A0 A2 = √3
A0 A4 = √3
Hence , ( A0 A1) (A0 A2 ) ( A0 A4 ) = 3
Hence (C) is the correct answer.