Let  $A_0 A_1 A_2 A_3 A_4 A_5 $ be a regular hexagon inscribed in a circle of unit radius…

Problem: Let  $A_0 A_1 A_2 A_3 A_4 A_5 $ be a regular hexagon inscribed in a circle of unit radius. Then the product of the lengths of the line segments A0 A1 , A0 A2 , and A0 A4 is

(A) 3/4

(B) 3√3

(C) 3

(D) 3√3/2

Sol:

Circle

$\large (A_0 A_1)^2 = \frac{1}{4} + \frac{3}{4}= 1 $

A0 A1 = 1

A0 A2 = √3

A0 A4 = √3

Hence , ( A0 A1) (A0 A2 ) ( A0 A4 ) = 3

Hence (C) is the correct answer.