lim_ n →∞ (n!/(mn)^n)^(1/n) (m ∈ N) is equal to 

Q: $\large lim_{n \rightarrow \infty} (\frac{n!}{(m n)^n})^{1/n}$  (m ∈ N) is equal to

(A) $\large \frac{1}{e m}$

(B) $\large \frac{m}{e }$

(C) e m

(D) $\large \frac{e}{ m}$

Solution :

L.H.S $\large = lim_{n \rightarrow \infty} (\frac{1.2.3…..n}{(m n)^n})^{1/n}$

$\large = lim_{n \rightarrow \infty} (\frac{1.2.3…..n}{(n)^n})^{1/n} \times \frac{1}{m}$

$\large lim_{n \rightarrow \infty} \frac{1}{m}[(\frac{1}{n}) (\frac{2}{n}) (\frac{3}{n})….(\frac{n-1}{n}) (\frac{n}{n})]^{1/n}$ = S (say)

$\large ln S = lim_{n \rightarrow \infty} [ln(\frac{1}{m}) + \frac{1}{n} \Sigma_{r=1}^{n} ln(\frac{r}{n})] $

$\large ln S = – ln m + \int_{0}^{1} ln x dx $

$\large ln S = – ln m + [x ln x – x ]_{0}^{1} $

$\large ln S = – ln m + (-1)$

$\large ln S = – ln m – ln e $

$\large ln S = – ln e m $

$\large ln S = ln\frac{1}{e m} $

$\large S = \frac{1}{e m} $

Hence (A) is the correct answer.