Q: $\lim_{x \rightarrow 1} \frac{sec^{-1}(2-x)}{x^2}$ is equal to
(A) 0
(B) 1/2
(C) 4
(D) does not exist
Ans: (D)
Also Read :
- $lim_{x rightarrow 0} (frac{a^x + b^x + c^x}{3})^{2/x}$ , a, b, c > 0 is equal to
- $ lim_{x rightarrow infty} frac{(int_{0}^{x}e^{t^2}dt)^2}{int_{0}^{x}e^{2t^2}dt} $ is equal to
- If for non-zero x , $ 3 f(x) + 4 f(frac{1}{x}) = frac{1}{x} - 10 $ then $int_{2}^{3}f(x) dx $ is…
- Let $S= Sigma_{i=1}^{n} a_i $ and Show that $ Sigma_{i=1}^{n} frac{s}{s-a_i} > frac{n^2}{n-1}$…
- $ frac{1}{1!(n-1)!} - frac{1}{3!(n-3)!} + frac{1}{5!(n-5)!} - ...is ; equal ; to $
- $frac{x}{a} + frac{y}{b} = 1 $ and $frac{x}{c} + frac{y}{d} = 1 $ intersect the axes at four…
- Given $f(x) = lnfrac{1 + x}{1 - x}$ and $g(x) = frac{3x + x^3}{1 + 3x^2}$ . Then f(g(x)) is equal…
- $int ( x + frac{1}{x})^{n+5} (frac{x^2 -1}{x^2})dx $ is equal to
- $ int frac{(x + x^{2/3} + x^{1/6})}{x(1 + x^{1/3})} dx $ is equal to
- The lines $ frac{x-1}{3} = frac{y-1}{-1} = frac{z+1}{0} $ and $largeĀ frac{x-4}{2} =…