Alternating Current : The magnitude of alternating current changes continuously with time and its direction is reversed periodically . It is represented by
I = I0 sin ωt
or , I = I0 cos ωt ;
Where ω = angular frequency of a.c
Mean value & RMS value of Alternating Current & Voltage:
The mean value of sinusoidal current or voltage in one complete cycle is zero, for half cycle, the mean value can be found as given below.
Let I = I0 sin ωt
$ \displaystyle I_m = \frac{\int_{0}^{T/2}I dt}{\int_{0}^{T/2}dt} $
$ \displaystyle I_m = \frac{\int_{0}^{T/2}I dt}{T/2} $
$ \displaystyle I_m = \frac{2}{T}\int_{0}^{T/2}I_0 sin\omega t dt $
$ \displaystyle I_m = \frac{2 I_0}{\pi} $
Similarly ,
$ \displaystyle V_m = \frac{2 V_0}{\pi} $
Root Mean square value of Current & voltage (Vrms & Irms) :
I = I0 sin ωt
$ \displaystyle I_{rms} = \sqrt{\frac{\int_{0}^{T}I^2 dt}{\int_{0}^{T}dt}} $
$ \displaystyle I_{rms} = \frac{I_0}{\sqrt 2} $
Similarly ,
$ \displaystyle V_{rms} = \frac{V_0}{\sqrt 2} $
Exercise : The peak value of an alternating current is 10 A. Find its rms value.
Also Read :
AC circuit with a Resistor AC circuit with a capacitor AC circuit with an inductor L-C-R Series Circuit Power in an a.c. circuit Choke Coil Transformer A . C . Generator D. C . Motor |