Mean value & RMS value of Alternating Current & Voltage

Mean value & RMS value of Alternating Current & Voltage

The mean value of sinusoidal current or voltage in one complete cycle is zero, for half cycle, the mean value can be found as given below.

Let  I = I0 sin ωt

$ \displaystyle I_m = \frac{\int_{0}^{T/2}I dt}{\int_{0}^{T/2}dt} $

$ \displaystyle I_m = \frac{\int_{0}^{T/2}I dt}{T/2} $

$ \displaystyle I_m = \frac{2}{T}\int_{0}^{T/2}I_0 sin\omega t dt $

$ \displaystyle I_m = \frac{2 I_0}{\pi} $

Similarly ,

$ \displaystyle V_m = \frac{2 V_0}{\pi} $

Root Mean square value of voltage & current :(Vrms & Irms)

I = I0 sin ωt

$ \displaystyle I_{rms} = \sqrt{\frac{\int_{0}^{T}I^2 dt}{\int_{0}^{T}dt}} $

$ \displaystyle I_{rms} = \frac{I_0}{\sqrt 2} $

Similarly ,

$ \displaystyle V_{rms} = \frac{V_0}{\sqrt 2} $

Exercise : The peak value of an alternating current is 10 A. Find its rms value.

Also Read :

AC circuit with a Resistor
AC circuit with a capacitor
AC circuit with an inductor
L-C-R Series Circuit
Power in an a.c. circuit
Choke Coil
Transformer
A . C . Generator

Next Page → 

Leave a Comment