Let a particle be projected with a horizontal velocity V0 , which remains constant along horizontal line due to the absence of any horizontal force. Due to earth’s gravitation the particle acquires vertical velocity Vy at any time t and at any position P(x,y). Let the position vector of this point be $ \displaystyle \vec{r}$ .
Vy = (Vy)0 + gt
Since there is no vertical component of V0 initially, (Vy)0 = 0
Vy = g t
And , Vertical displacement is
$ \displaystyle y = (V_y)_0 t + \frac{1}{2} g t^2 $
Again , $ \displaystyle V_y^2 = ( V_y)_0^2 + 2 g y$
$ \displaystyle V_y^2 = 0 + 2 g y$
$ \displaystyle V_y = \sqrt{2 g y } $
Displacement :
Now the horizontal displacement x = V0t and the vertical displacement $\large y = \frac{1}{2} g t^2 $
Hence , $ \large t = \sqrt{\frac{2 y}{g}} $
Since the position vector $\displaystyle \vec{r}= x \hat{i} – y \hat{j}$ , putting the values of x and y, we obtain,
$ \displaystyle \vec{r}= V_0 t \hat{i} – \frac{1}{2}g t^2 \hat{j}$
Therefore ,
$ \displaystyle r = \sqrt{(V_0 t)^2 + (\frac{1}{2}g t^2)^2} $
$ \displaystyle tan\phi = \frac{g t^2/2}{V_0 t} $
$ \displaystyle tan\phi = \frac{g t}{2 V_0 } $
Velocity :
$ \displaystyle \vec{V}= V_x \hat{i} – V_y \hat{j}$
$ \displaystyle \vec{V}= V_0 \hat{i} – g t \hat{j}$
$ \displaystyle V = \sqrt{V_0^2 + (g t)^2}$
$ \displaystyle tan\theta = \frac{g t}{V_0} $
Again ,
$ \displaystyle \vec{V}= V_x \hat{i} – V_y \hat{j}$
$ \displaystyle \vec{V}= V_0 \hat{i} – \sqrt{2 g y} \; \hat{j}$
Horizontal Range :
If y = H (height of the cliff or height of fall of the projectile), the corresponding horizontal distance (Range R) can be found by putting the values of time of fall $ \displaystyle t = \sqrt{\frac{2 H}{g}}$ in the equation x = V0t.
$ \displaystyle x = R = V_0 \sqrt{\frac{2 H}{g}}$
On Putting x = R and $ \displaystyle t = \sqrt{\frac{2 H}{g}}$
We can find the average velocity and displacement of the particle during the motion when projected horizontally from the top of a cliff of height H with a speed V0.
Equation of Trajectory
The locus of the path of the particle is given as
$ \displaystyle y = \frac{1}{2}g t^2 $
On putting , t = x/V0
$ \displaystyle y = \frac{1}{2}g (x/V_0)^2 $
$\displaystyle y = \frac{g x^2}{2 V_0^2} $
It is a parabola.