MCQ | Quadratic Equations & Expressions

Practice Test-I

1. Let f(x) = x2 + bx + c, where b, c ∈ R. If f(x) is a factor of both x4 + 6x2 + 25 and 3x4 + 4x2 + 28x + 5, then the least value of f(x) is

(A) 2

(B) 3

(C) 5/2

(D) 4

Click to See Answer :
Ans: (D)

 

2. Let a, b, c be the sides of a triangle. No two of them are equal and λ ∈ R. If the roots of the equation x2 + 2(a + b+ c) x + 3λ (ab + bc + ca) = 0 are real, then

(A) λ < 4/3

(B) λ > 5/3

(C) λ ∈(1/3 , 5/3)

(D) λ ∈(4/3 , 5/3)

Click to See Answer :
Ans: (A)

 

3. Let f(x) = x2 + ax + b be a quadratic polynomial in which a and b are integers. If for a given integer n, f(n) f(n + 1) = f(m) for some integer m, then the value of m is

(A) n(a + b) + ab

(B) n2 + an + b

(C) n(n + 1) + an + b

(D) n2 + n + a + b

Click to See Answer :
Ans: (C)

 

4. If the equations x2 + ax + b=0 and x2 + bx + a = 0 have exactly one common root, then the numerical value of a + b is

(A) 1

(B) –1

(C) 0

(D) none of these

Click to See Answer :
Ans: (B)

 

5. The number of ordered pairs of positive integers x, y such that x2 + 3y and y2 + 3x are both perfect squares is

(A) 2

(B) 3

(C) 4

(D) 5

Click to See Answer :
Ans: (B)

 

6. For the equations x2 + bx + c = 0 and 2x2 + (b + 1)x + c + 1 = 0 select the correct alternative

(A) both the equations can have integral roots

(B) both the equations can’t have integral roots simultaneously

(C) none of the equations can have integral roots

(D) nothing can be said

Click to See Answer :
Ans: (B)

 

7. If x2 +ax +b is an integer for every integer x then

(A) ‘ a ‘ is always an integer but ‘ b ‘ need not be an integer.

(B) ‘ b ‘ is always an integer but ‘ a ‘ need not be an integer.

(C) a + b is always an integer.

(D) none of these.

Click to See Answer :
Ans: (C)

 

8. If a , b , c be the sides of ΔABC and equations ax2 + bx + c=0 and 5x2 + 12x + 13=0 have a common root, then ∠C is

(A) 60°

(B) 90°

(C) 120°

(D) 45°

Click to See Answer :
Ans: (B)

 

9. The equation x2 + nx + m = 0, n, m ∈ I, can not have

(A) integral roots

(B) non-integral rational roots

(B) irrational roots

(D) complex roots

Click to See Answer :
Ans: (B)

 

10. If  $\large log_{(3x+5)}(ax^2 + 8x + 2) > 2 $   then x lies in the interval

(A) (-4/3 , -20/11)

(B) (-4/3 , -23/22)

(C) (-5/3 , -23/22)

(D) None of these

Click to See Answer :
Ans: (B)

 

11. The number of ordered pairs (a, b) such that the equations ax + by = 1 and x2 + y2 = 50 have all solutions integral is

(A) 72

(B) 66

(C) 84

(D) 36

Click to See Answer :
Ans: (B)

 

12. If the roots of the equation (a2 + b2) x2 + 2x (ac + bd) + c2 + d2 = 0, are real, then these are equal. This statement is (a, b, c, d ∈ R)

(A) true

(B) false

(C) can’t say

(D) none of these

Click to See Answer :
Ans: (A)

 

13. If equation x2 – (2 + m)x + (m2 – 4m + 4) = 0 has coincident roots then

(A) m = 0, 1

(B) m = 2/3 , 1

(C) m = 0, 2

(D) m = 2/3 , 6

Click to See Answer :
Ans: (D)

 

14. A root of the equation, sinx + x – 1 = 0, lies in the interval

(A) (0, π/2)

(B) (- π/2, 0)

(C) (π/2, π)

(D) ( -π, -π/2)

Click to See Answer :
Ans: (A)

 

15. If p, q, r ∈ R and the quadratic equation px2 + qx + r = 0 has no real root, then

(A) p(p + q + r) < 0

(B) p(p – 2q + 4r)

(C) p(p + 4q + 2r) < 0

(D) None of these

Click to See Answer :
Ans: (B)

 

16. If x2 – 4x + log1/2 a = 0 does not have two distinct real roots, then maximum value of a is

(A) 1/4

(B) 1/ 16

(C) –1/4

(D) none of these

Click to See Answer :
Ans: (B)

 

17. The least value of |a| for which tanθ and cotθ are the roots of the equation x2 + ax + b = 0 is

(A) 2

(B) 1

(C) 1/2

(D) 0

Click to See Answer :
Ans: (A)

 

18. If the equation x3 – 3ax2 + 3bx – c = 0 has positive and distinct roots, then

(A) a2 > b

(B) ab > c

(C) a3 > c

(D) a3 > b2 > c

Click to See Answer :
Ans: (A)

 

19. The value of a for which exactly one root of the equation eax2 – e2ax + ea – 1 = 0 lies between 1 and 2 are given by

(A) $\large ln(\frac{5-\sqrt{13}}{4}) < a < ln(\frac{5+\sqrt{13}}{4})$

(B) 0 < a < 100

(C) $ln\frac{5}{4} < a < \frac{10}{3}$ (D) None of these

Click to See Answer :
Ans: (D)

 

20. If α, β be the roots of x2 – a(x – 1) – b = 0, then the value of $\large \frac{1}{\alpha^2 – a \alpha} + \frac{1}{\beta^2 – a \beta} + \frac{2}{a+b}$  is

(A) 4/(a+b)

(B) 1/(a+b)

(C) 0

(D) 1

Click to See Answer :
Ans: (C)

 

21. Consider the equation x3 – nx + 1 = 0 , n ∈ N , n ≥ 3 . Then

(A) Equation has atleast one rational root .

(B) Equation has exactly one rational root.

(C) Equation has all real roots belonging to (0, 1).

(D) Equation has no rational root.

Click to See Answer :
Ans: (A)

 

22. If sina, sin b and cosa are in GP, then roots of x2 + 2xcotβ + 1 = 0 are always

(A) equal

(B) real

(C) imaginary

(D) greater than 1

Click to See Answer :
Ans: (B)

 

23. If a, b ∈ (0, 2) and the equation $\frac{x^2 + 5}{2} = x-2 cos(ax+b)$   has at least one solution then a + b is

(A) 1

(B) 2

(C) e

(D) π

Click to See Answer :
Ans: (D)

 

24. Let P(x) and Q(x) be two polynomials. If f(x) = P(x4) + xQ(x4) is divisible by x2 +1, then (A) P(x) is divisible by (x-1)

(B) Q(x) is divisible by (x-1)

(C) f(x) is divisible by (x-1)

(D) all of them

Click to See Answer :
Ans: (D)

 

25. If α, β be the roots of 4x2 – 16x + λ = 0, λ ∈ R such that 1 < α < 2 and 2 < β < 3, then the number of integral solutions of λ is

(A) 5

(B) 6

(C) 3

(D) 2

Click to See Answer :
Ans: (C)

 

26. The solution of the equation |x + 1|2 – 2|x + 2| – 26 = 0 is

(A) ±7

(B) –7, √29

(C) ±√29

(D) –7, 29

Click to See Answer :
Ans: (B)

 

27. The roots of the equation (c2 –ab)x2 – 2(a2 –bc)x + (b2 – ac) =0 are equal then

(A) a2 + b3 + c3 = 3abc or a = 0

(B) a + b + c = 0

(C) a2 + b3 + c3 = 3abc or a = 1

(D) none of these

Click to See Answer :
Ans: (A)

 

28. If (λ2 + λ – 2)x2 + (λ + 2)x < 1, x ∈ R, then λ belongs to the interval

(A) (-2, 1)

(B) (-2 , 2/5)

(C) (2/5 , 1)

(D) None of these

Click to See Answer :
Ans: (D)

 

29. If expression x2 – 4cx + b2 > 0 ∀ x ∈ R and a2 + c2 < ab, then range of the function $\frac{x+a}{x^2 + bx+ c^2}$  is

(A) (- ∞, 0)

(B) (0, ∞)

(C) (- ∞, ∞)

(D) None of these

Click to See Answer :
Ans: (C)

 

30. If for all real values of x , $ \frac{4x^2 + 1}{64x^2 – 32x sin\alpha + 29} > \frac{1}{32}$
then α lies in the interval

(A) (0, π/3)

(B) (π/3 , 2π/3)

(C) (4π/3 , 5π/3)

(D) none of these

Click to See Answer :
Ans: (A)

 

Click to See All Answers :
1. (D)   2. (A)   3. (C)   4. (B)   5. (B)   6. (B)   7. (C)   8. (B)   9. (B)   10. (B)
11. B   12. A   13. D   14. A   15. B   16. B   17. A   18. A   19. D   20. C  

21. A   22. B   23. D   24. D   25. C   26. B   27. A   28. D   29. C   30. A  

 

Practice Test-II →

Leave a Comment