Q: The coefficient of x5 in the expansion of $\large (1 + x)^{21} +(1+x)^{22} +…+ (1 + x)^{30} $ is
(A) 51C5
(B) 9C5
(C) 31C6 – 21C6
(D) 30C5 + 20C5
Sol: $\large (1 + x)^{21} +(1+x)^{22} +…+ (1 + x)^{30} $
$\large = (1 + x)^{21} (\frac{(1+x)^{10}-1}{(1+x)-1})$
$\large = \frac{1}{x} [(1+x)^{31} – (1+x)^{21} ] $
coefficient of x5 in the given expression
$\large = coefficient \; of \; x^5 in \; \frac{1}{x} [(1+x)^{31} – (1+x)^{21} ] $
$\large = coefficient \; of \; x^6 in \; [(1+x)^{31} – (1+x)^{21} ] $
$\large = 31_{C_6} – 21_{C_6} $
Hence (C) is the correct answer.