Q: The density of the core of a planet is ρ1 and that of the outer shell is ρ2, the radii of the core and that of the planet are R and 2R respectively. The acceleration due to gravity at the surface of the planet is same as at a depth R. Find the ratio of ρ1 /ρ2
(a) 3/7
(b) 7/4
(c) 4/7
(d) 7/3
Ans: (d)
Sol: Let M = mass of planet
$ \displaystyle M = \frac{4}{3}\pi R^3 \rho_1 + \frac{4}{3}\pi[(2R)^3 – R^3]\rho_2$
$\displaystyle M = \frac{4}{3}\pi R^3 (\rho_1 + 7\rho_2 )$
At the surface ,
$\displaystyle g_1 = \frac{GM}{(2R)^2} $
$\displaystyle =\frac{\pi G R}{3}(\rho_1 + 7\rho_2 ) $
Mass of the core is
$ \displaystyle m = \frac{4}{3}\pi R^3 \rho_1$
At depth R ,
$ \displaystyle g_2 = \frac{Gm}{(R)^2} $
$ \displaystyle = \frac{4}{3}\pi G R \rho_1 $
As Acceleration due to gravity is same
$ \displaystyle g_1 = g_2 $
$ \displaystyle \frac{\pi G R}{3}(\rho_1 + 7\rho_2 ) =\frac{4}{3}\pi G R \rho_1 $
on solving ,
$ \displaystyle 3\rho_1 = 7\rho_2 $
$\displaystyle \frac{\rho_1}{\rho_2}=\frac{7}{3} $