Q: The electric potential between a proton and an electron is given by $V = V_0 ln \frac{r}{r_0}$ , where r0 is a constant. Assuming Bohr’s model to the applicable, write variation of rn with n, n being the principal quantum number
(A) rn ∝ n
(B) rn ∝ 1/n
(C) rn ∝ n2
(D) rn ∝ 1/n2
Ans: (A)
Sol: $\large U = e V = e V_0 ln \frac{r}{r_0}$
$\large F = |-\frac{dU}{dr}| = \frac{e V_0}{r}$
This force will provide necessary centripetal force.
$\large \frac{m v^2}{r} = \frac{e V_0}{r} $
$\large v = \sqrt{\frac{e V_0}{m}}$ …(i)
According to Bohr’s theory;
$\large m v r = n\frac{h}{2\pi}$ …(ii)
Dividing (ii) by (i)
$\large m r = ( \frac{n h}{2\pi}) \sqrt{\frac{m}{e V_0}}$
rn ∝ n