The mass M shown in the figure oscillates in simple harmonic motion with amplitude A. The amplitude of the point P is…

Q: The mass M shown in the figure oscillates in simple harmonic motion with amplitude A. The amplitude of the point P is

Numerical

(a) $ \displaystyle \frac{k_1 A}{k_2} $

(b) $ \displaystyle \frac{k_2 A}{k_1} $

(c) $ \displaystyle \frac{k_1 A}{k_1 + k_2} $

(d) $ \displaystyle \frac{k_2 A}{k_1 + k_2} $

Ans: (d)

Sol: When two springs are in series, the tension or force is the same for both. Therefore,

k1 x1 = k2 x2

x2 = k1 x1 / k2

Total extension (i.e.,amplitude)= sum of the extensions x1 and x2

A = x1 + x2

A = x1 + (k1 x1 )/ k2

x1 = k2 A/(k1  + k2)