Q: The tangent at a point P on the hyperbola $\frac{x^2}{a^2} – \frac{y^2}{b^2} = 1 $ meets one of its directrices in F. If PF subtends an angle θ at the corresponding focus, then θ equals
(A) π/4
(B) π/2
(C) 3π/4
(D) π
Sol. Let directrix be x = a/e and focus be S(ae, 0). Let P( asecθ , btanθ) be any point on the curve,
Equation of tangent at ‘P’ is $\large \frac{x sec\theta}{a} – \frac{y tan\theta}{b} = 1 $
Let ‘F’ be the intersection point of tangent of directrix, then
$\large F \equiv (a/e , \frac{b(sec\theta – e)}{e tan\theta})$
$\large m_{SF} = \frac{b(sec\theta – e)}{-a tan\theta (e^2 -1)} $
$\large m_{PS} = \frac{b tan\theta}{a(sec\theta -e)} $
⇒ mSF . mPS = –1
Hence (B) is the correct answer.