Q: The value of $\displaystyle \int_{0}^{\pi/4} \frac{dx}{a^2 cos^2 x + b^2 sin^2 x} $ is
(A) $\displaystyle \frac{1}{ab} tan^{-1} (\frac{b}{a}) ; a > 0 , b > 0$
(B) $\displaystyle \frac{1}{ab} tan^{-1} (\frac{b}{a}) ; a < 0 , b < 0$
(C) $\displaystyle \frac{\pi}{4} ; a = 1 , b = 1 $
(D) $\displaystyle \frac{1}{ab} tan^{-1} (\frac{a}{b}) + \frac{1}{ab}$
Ans: (A) , (B) , (C)
Sol: $\displaystyle I = \int_{0}^{\pi/4} \frac{dx}{a^2 cos^2 x + b^2 sin^2 x} $
Dividing Nr and Dr by cos2x ,
$\displaystyle I = \int_{0}^{\pi/4} \frac{sec^2 x dx}{a^2 + b^2 tan^2 x} $
Put tanx = t ; sec2x dx = dt
$\displaystyle I = \int_{0}^{1} \frac{dt}{a^2 + b^2 t^2} $
$\displaystyle I = \frac{1}{b^2} \int_{0}^{1} \frac{dt}{t^2 + \frac{a^2}{b^2}} $
$\displaystyle I = \frac{1}{b^2} \int_{0}^{1} \frac{dt}{t^2 + (\frac{a}{b})^2} $
$\displaystyle = \frac{b}{a b^2} [tan^{-1}\frac{b t}{a}]_{0}^{1} $
$\displaystyle = \frac{1}{a b} [tan^{-1}\frac{b}{a}] $ ; (a ≠0 , b≠ 0)
Also for a = 1, b = 1
$\displaystyle I = \int_{0}^{\pi/4}dx = \frac{\pi}{4} $
Hence (A), (B), (C) are correct answers.