Q : The values of α and β such that equation x2 + 2x + 2 + eα – sinβ = 0 have a real solution is
(A) $\large \alpha , \beta \in R $
(B) $\large \alpha \in (0 , 1) \; , \beta \in (\pi/2 , 2 \pi) $
(C) $\large \alpha \in (0 , \infty) \; and \beta \in (\pi/2 , \pi) $
(D) None of these
Ans: (D)
Solution: x2 + 2x + 2 + eα – sinβ = 0 has real roots if D ≥ 0
⇒ 1 – 2 – eα + sinβ ≥ 0
⇒ sinβ ≥ 1 + eα
Hence no real values of α and β are possible.