Q. Two stones are projected from the top of a tower in opposite direction, with the same velocity v but at 30° & 60° with horizontal respectively. The relative velocity of first stone relative to second stone is
(a) 2v
(b) √2 v
(c) 2 v/√3
(d) v/√2
Click to See Answer :
Sol: $\displaystyle \vec{v_1} = v cos30\hat{i} + v sin30\hat{j}$
$ \displaystyle \vec{v_2} = v cos60\hat{(-i)} + v sin60\hat{j}$
$ \displaystyle \vec{v_{12}} = \vec{v_1}-\vec{v_2} $
$ \displaystyle = (v cos30 + v cos60)\hat{i} + (v sin30 – v sin60)\hat{j}$
$ \displaystyle = v[(\frac{\sqrt{3}}{2} +\frac{1}{2})\hat{i} + (\frac{1}{2} -\frac{\sqrt{3}}{2})\hat{j}] $
$ \displaystyle = v[ \frac{\sqrt{3}+1}{2}\hat{i} – \frac{\sqrt{3}-1}{2}\hat{j}]$
$ \displaystyle v_{12} = \sqrt{2} v $