Q : You measure two quantities as A = 1.0 m ± 0.2 m, B = 2.0 m ± 0.2 m. We should report correct value for √(AB) as
(a) 1.4 m ± 0.4 m
(b) 1.41 m ± 0.15 m
(c) 1.4 m ± 0.3 m
(d) 1.4 m ± 0.2 m
Click to See Answer :
Sol: Let $\displaystyle x = \sqrt{AB} $
$\displaystyle x = \sqrt{(1.0)(2.0)} = 1.414 $
Rounding off to two significant figures ,
x = 1.4 m
$\displaystyle x = \sqrt{AB} $
$\displaystyle \frac{\Delta x}{x} = \pm( \frac{1}{2}\frac{\Delta A}{A} + \frac{1}{2}\frac{\Delta B}{B})$
$\displaystyle \frac{\Delta x}{x} = \pm \frac{1}{2}( \frac{\Delta A}{A} + \frac{\Delta B}{B})$
$\displaystyle \frac{\Delta x}{x} = \pm \frac{1}{2}( \frac{0.2}{1} + \frac{0.2}{2})$
$\displaystyle \frac{\Delta x}{x} = \pm \frac{1}{2}(0.3)$
$\displaystyle \Delta x = \pm \frac{0.3}{2} x $
$\displaystyle \Delta x = \pm \frac{0.3}{2} \times 1.414 $
$\displaystyle \Delta x = \pm 0.212 m = \pm 0.2 m$ ( Rounding off to one significant figures )
x + Δx = 1.4 m ± 0.2 m